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Abstract: This paper investigates the topology of self-motion
manifolds for serial redundant manipulators with revolute joints
in the prese nee of joint limits. It is known that the preimages
of singulartaskpoints divide the configuration space into regions
where self-limtioll manifolds are homotopic. Initialy, we describe
how self- notion manifolds rupture as we move from one region
10 thenext. Theinfluence of jointlimits ou those topolagies is
investigated next. This analysis led to the discovery of the semi-
singularity, anew type of singularity introduced by the prescnce
of joint limits in redu ndant manipulators. A 3-DOL planar robot
is used toillustrate the phenomenaand a case study explores the
concepts in more detail. This is an important analysis for global
redundancy resolutipn and path planning because it describes the
conncectivity as well asthe geuneral for In of sdf-lllolioli manifolds.

1 Introduction

Animportant aspect inthe study of redundant manipulators is
the issue of sdf-rllotion. A redundant manipulator generates infi-
nite joint configurations for a give nend-cflector position. Those
con figurations can be described by a finite set of manifolds in the
configuration space. They arc called self-Inotiorl manifolds be-
cause the end-eflector remains motionless as we reconfipu re the
arin along those manifolds.
Considering forward kinematics as the map:

F0): w, (1)

where 8 ¢ C,the configuration space, and 2 € W, the work space,
we describe inverse kine matics as the premap:

,’f'"’(a:) = ,«\/((:1:), . (?')

wheie M is a collection of manifolds in the configu ration space
representing al juverse inaps of the work space positiona:. (3]
presents a good introduction to this issue and in order to avoid
multiple notation we will preserve most of the terms defined there.
Based on the analysis of self motionmanifold topologics, the
configuration space is divided into severa regions caled c¢-bundles.
Sclf-motion manifolds within a c-bundle are homotopic (see 1 ef-
inition 1), represeuting ahomotopy class. The forward map of a
¢ bundle is a w-street, a region in the work space. Since inverse
kinematics produces a collection of manifolds, the preimage of a
w-sheet is a collection of c-bundles. C-bundles arc separated by
co-regular surfaces. A co-regular surface is forinally defined as:

CS . F(Y'( 9) A3)

where § is a manifold of singular configurations. F(S) is refer 1ed
to in[3] as a critical value manifold arid in [11] as a jacobiansur-
face. It is important, however, that F(S) be interior to the work
space. Boundary singularities donot generate co-regular surfaces
in general because they do not separate betweenreachable regions
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inthe work space. ‘1'here is oneexception to that, however,and
we Will explore it in the case study.

This an alysis in terms of manifold maps is uscful for global
path planuing and optimization.It alows us to determine how
to associate regionsin the work space to regions inthe configu -
ration space and how to connectthem as a certain task is to be
performed. Furthermore,the connectivity and topology of self-
motion manifolds IS necessary for an eflective global redundaucy
resolution strategy.

The main objective of this paper is to describe how joint limits
affect self-r)mtion topologies, hut initially we present a discussion
011 what happens to themanifolds 8swe cross aco-regular surface.

The paper is organized as follows. In the next section we
prove atheorem based on a variation of the classic definition of
homotopy. in section 3, we describethe self-motion topology
as we €10ss ¢ co regular sui face. The influence of joint limits is
discussed in section 4. We introduce in section 5 anew type of
singularity. Section 6 analyses the 8-DOI* AA1l Arm as a case
study. Section7isasummary and conclusion.

2 Prelitninaries
Giventhe following definition [7],

Definition 1 Two maps, fo 0 X - Y and fi: X - Y aic
homotopic if there is a smooth map, F' @ X X I -» Y, [ being the
interval [0,1], such that F'(x,0) = fo(z) and F(=,1): fi(x), i.e
fo can be smoothly deformed to fy.

it is straightforward to prove that manifolds within a ¢ bundle
are homotopic. This is done by taking F as the manifoldin-
verse kinewatics aong a work space path whichisinterior to the
corresponding w-sheet.

However, not much can be said about manifolds from different
c-bundles. They are heterotopic (non-homotopic) in general but
there arc some cases where a smooth function connecting them
can be found. ‘I'his information, however, is of little use if such
function dots not reflect the manipulator kinematics. Wcintro-
duce a variation of the definition above as follows:

Definition 2 Two maps are k-homotopic if they are homotopic
under the nanipuletor kinematics, i.e. F' is driven by the given
manipulator inverse kinematics: F(x, 1) = M(z(i)), where (i)
is an end-effector smooth trajectory.

Based on this definition, we can state the following theoremn:
Theoremn 1 Manifolds from different c-bundles are k-heterolopic.
Proof: Any Continuous path connecting manifolds from differ-

ent c-bundles rnrrst cross a least onc co-regular surface, which
contains a singular point. Therefore,the manifold deformation
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Figure 1. The Hyperbola »*-- y*: c as ¢ crosses zero.

function 1“, which is driven by inverse kinematics, can not be
stnooth.

Notice that, since inverse kinematics is the driving function,
it is appropriate to consider a k-homotopy clam as the class of
collections of manifolds, This class describes a collection of ¢-
bundles as the premap of a single w-sheet.

3 Crossing Co-Regular Surfaces

At a singular point, the dimnension of the self-)llotion is locally
increased by the corresponding number of lost degrees of freedomn.
This fact is easily observedby analyzing the jacobiamnmmatrix.
Any dimensional clecl’case in the range space is followed by a
dirensionalincrease in the null space, since tbcy always add up
to the dimension of the domain [9].

&= JO, tk(J)4 dim(N) = n. (4)

The local dimensionalincrease of the null space is observed in
the configurationspace of onc-degree-of-lcdurddallcy manipulators
as the intersection of two self-niotion curves. This very aspect is
thereason for not Considering a self- motion curve containing a
singular poiut as a manifold in classical terms.

It is important to note, however, that self-I[lotiorls arere-
strictedto those curves joined at the singular point. In other
words, velocities can be gencrated along 2 different directions,
but not along an arbitrary linear combination of those2 direc-
tions as the jacobian analysis may suggest.

W c can easily cxtend this concept for multiple degrees of
redundancy, but this phenomena is best visualized in terms of
curves rather than st faces or multidimen gjonal primitives.

This section describes how those 2 curves split as wec move
fiom one w-sheet to the next. At the neighborhood of aninterior
singularity, the self-rnotion manifolds are shaped asbranches of a
hyperbola:

1'2» y2: c (5)

with ¢ < 0 in onc side, ¢ > 0 in the other side and c = O at the
jacobian sulfate. Thistransition justifies the topology change be-
tween neighboring k-homnotopy classes. If wc label the 4 branches
emerging from the singular point as 1, 2, 3 and 4 according to
Figure 1, wc will scc the connections 1-2, 3-4 when ¢ <0 and 1-3,
2-4 when c >0.

What happens outside this sufficiently small neighborhood is
aglobal property and, as such, depends on particular arm classes,
geometrics and constraints. At the singularity and its immediate
neighborhood, however, the hyperbolic patterndominates. It is
also important to note that Figurel is just a diffeomorphic rep-
resentation of the phenomena. The actual self-njotiorr curves arc

Figure 2: Planar Arin Work Space (top semi-disk shown only)

embedded in the configuration space which is multidimensional
and not necessarily coplanar.

3.1 Example

Consider the link lengths fy=- 6, l2= 3 and = 2 in the planar
mani pulator shown in Figure 2.

The jacobian surfaces shown at the polar radius p = 5 and
7 divide the work space into 3 w-sheets. W-sheets 1 and 3 arc
premapped into a single region each in the configuration space
(c-bundles 1 and 3 respectively) as show in Figure 3, and the self-
motion manifolds in those regions are diflcomorphic to a circle
{Figure 4).

\V-sheet 2, however, is premapped into a pair of regionsin the
configuration space (c-bundles 2a and 2b) and the self-nlotiml
manifolds arc diffeomorphic to a pair of circles (there is aniden-
tification between points 360° apart).

Bundles marked with one or nore priines (') arc repetitions of
the same pattern onc revolution apart andshould be considered
as the same bundle when there are no joint limits. This *'" uation
will change if joint limits are present, 8 WC Will explore in the next
section. Notice also that, for simmplicity,the configuration Pace
is represented by its projection onto the 0203 plane. Due to the
invatiance of the patterns with respect to the polar angle of the
end-cffector, the third dimension is easily obtained by sweeping,
the curves with respect to the #, axis. )

Figure 5 shows the connectivity among the Vaious bundles.
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Figure 3: Planar Arm Configuration Space.




Iligure 4: Sdf- Motion Manifold samples.

Nodes represent bundles and contain reference to the correspond-
ing self-motion manifold topology. Somenodes are clustered to
represent the collection of bundles premapped fro In a 81V¢ n w-
sheet. dges represent the transitionfromone bundle to the next
through a co-regular surface. This graph provides concise and
valuable informationto assist a global plauner in designing path
strategies.

Theinter ior singular i tics are easily identified as the intersec-
tion of two cur ves. Thefirst singularity is givenby(az,Og):
(1S0°, 180") and corresponds to the polar radius p = 5. The sec-
ond singularity is given by (0, 180°) with p =- 7. The boundary
singularitics are marked for reference only, since they play ouly a
marginalrole inthe current analysis. Theyare given by (180°, O),
P: 1and(0,0),p=1I

Figure 6 focuses on the vicinity of the 2interior singulatjties,
showing how the neighboring manifolds converge to develop the
hyperbolic pattern. Fach sélf-r))otiolL curve is labelled with the
correspouding polar radius and reference to the bundle they be-
long to.

4  Joint Limits

The glob al behavior of redundant manipulators is drastically af-
fected by joint limits.

Revolute joint space primitives without limits arc modeled
as circles,since a 360° rotation restores its initial configuration.
Generalizing, a n-1)QOF revolute-join ted manipulator has its con -
figurationspace modeled as a n-torus.

Modeling a revolute joint with limits is in a way simmpler, be-
cause it can be viewed as an interval rather than a circle. The

e
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Figure 5: Connectivity graph for unbounded joints.

Figure 6: Self-Motion Manifolds near the Interior Singulaiities.

entire configuration space of limited revolute joints can be mod-
eled as a n-1) hypercube rather than a n-torus. On the other
hand, the consequences to the self-rnotion topologies are rather
complex, as we address in this section.

If several but limited rotations are allowed a any joint, the
issue of multiple solutions must be carefully analyzed. For aun
unbounded joint, a 360° rotation produces essentialy the same
solution. However, if the joint range is bound ed, those solutions
must be treated as different because their locations in the con fig-
ur ation space with respect to thelimits arc different. A planar
2-DOF revolute manipulator has in general 2 solutions f{or un-
bounded joints, but if troth joints ac bounded to two revoluticrs
each, the number of distinct solutions beconies S.

Interms of the number of distinct solutions, a limitless joint
behaves as a jointlimited to a single revolution. Fromth at point
on, for every rotary joint that doubles its range, the nuinber of
solutions is doubled as well.

The presence of joint limits has also asignificant impact on the
topology of self-iotion manifolds. When the joint limit crosses
the interior of a c-bundle, the k-homotopy within that bundle is
disrupted and new k-homotopy classes emerge. New co-regular
surfaces are created, splitting the original trundle into separate
regions, each associated to a different k- homotopy class.

4.1 Example (cont. )

W c described in section 3.1 the self-motion manifold topologies
for the planar manipulator without joint linits. If we consider

c-1

Figure 7: Connectivity Graph for 8;,0; € {-180°,360°].
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Pigure 8: C-Bundles for 0;,0; as ineq. 6 .

joints 2and 3 bothlimited to the interval [- 1SO°, 360°] in Figure
3, we cansec that self-rootion manifolds premapped from a posi-
tion in w-1 become difteomorphicto a circle (bundle ¢-1) and 3
segments (bundles c-1 417 ¢- 14 1), Analogously, the k-homotopy
class of w-3 will consist of manifolds dffcomor phic to acircle and
3 segments. The w-2 shect will be premapped to 3 ¢ bundles forin-
ing a k-homotopy class of manifolds diffeomnorphic to 3 seginents.

Figure 7 shows the corresponding connectivity graph.
We introduce a this point the following constraint s:

143.5°<02< 173.5° (6)
- 109°<03< 13s.5°

For simplicity, without being unrealistic, joint 1 is unlimited
in this example.

Figures 8 and 9 show theeffect such joint limits produce in the
configurationandwork space topologies. The c¢-3 bundle (Iigure
3) is cut twice by thelimits of 03, generating 3 different sub-
bundles. Theinnermost bundle, ¢-9, corresponds to the class of
self.rl]otio]l manifolds not affected by the joint litnits, continuing
to be diffcomorphic to a circle. C-8 is cut once and the manifolds
become seginents.

The third region is cut twice and the premap becotnes a pair
of seginents. Notice, however,that this third pair of manifolds
becoines k-homotopic to the manifolds in the next pair of bundles
(c-2a and c-2h iukigure 3) and we can merge those regions to
obtain c-7a and c¢-7b. Notice also that theoriginal co-regular
surface where p: 7 has been removed in this process. This is
due to the fact thatthe singularity which was used to genctate
that surface nolonger belongs to the €Ol figuration space.

By the same tokeu, the inner border of w-7 shifts from p = 5
to p = 4.5, where another factor comesinto play. Due to the
upper limit of 02, a third bundle is formed and the premap of a
point in w-6 is diffeomorphic to 3 segments. In w-5 we havea
pair of segiments and in w-4 there is only one segiment. The work
space inner boundary was changed from =110 p=1.2

Figure 10 shows the corresponding connectivity graph.

Inorder to assist in the visualization of these phenomena, wc
have included in Figure 4 a rectangle corresponding to the joint
limits of this example and all manifolds involved at their extended
shape.

5 The Scrni-Singularity

Section 4 described the impact of joint limits on the topology of
self-lllotion manifolds. New c.o-regular surfaces are created and
in this section we address the reasoning behind the appearance of

Figure 9: W-Sheets for 01,03 as ineq.6

those surfaces.

A standard coregular surface is pivoted by amanifold of sin-
gular configurations (cg. 3). In those singularities, the jacobian
matrix loses its full rank and therefore velocities in a certain work
space direction can not be generated. In the planar manipulator
example, it rncans that all three columns of the 2 x 3 jacobian
matrix ac linearly dependent (aligned) and the infeasible direc-
tiou is orthogona to those vectors. Notice that the singularity is
bidirectional,i.e. if a certain velocity v isinfeasible, S0 is - u.

RS VI PRRIREN Y ()

The new co-regular surfaces arealso pivoted by singularities,
but the description of those singularities is more involved. The
velocity domain of a joint at its limit is unidirectional, and so
becomes the space spanned by the col responding jacobian col-
umnn. If the remaining joints do not generate a full rankinap,the
corresponding configuration is in semi-singularity) Imeaning that
a certain velocity v is feasible but - u isnot.

At a standard singularity, the range space shiinks from a hy -
perspace to a hyperplane. At a semi-singularity, the range space
becomnes a semi-hyperspace. This conclusion can also be used to
determine the shape of manipulability ellipsoids. This type of
singularity produces a scini-ellipsoid.

The same line of reasoning can be made for the case where
ascini-singularity occurs a the intersection of two or more joint
limits. Being at the joint limit is therefore rrot a suflicient condi-
tion for the occurrence of asemni-singularity. It is required that the
manipulator becomes singular (or at least semi-singular in case of
multiple joint limits) without the contribution of the joint at its
limit. Notice the fundamental difference in this respect between
redundant and non-redundant manipulators. For non-redundant
manipulators, every configuration with at least oue joint at its
limit is automatically semni-singular because the remaining joints
can not restore full rank.

The ncw co-regular surfaces described in section 4 arc pivoted
by semi-singularities which are mappcd to the interior of the work
space. Those semi-singulariyies which do not generate co-regular
surfaces actually determine the ncw boundary of the work space,
as we discuss in the next section.

5.1 Example_(cont. )

In this seclion wc will describe the serni-singularities encountered
in Figure 8.

There arc 6 semi-singularities in the example given by eq. 6,
which are labelled A to F in Figure 8. Semi-singularities A, B and
C occur at the joint 3 limits and configuration A is displayed in
Figure 9. Notice that the cnd-effecter is aligned with link 1 and
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Figure 10: Councctivity Graph for 0,,03 asin eq.6

therefore both joints 1 and 2 generate end-cflector velocitiestan-
genttothecirclep= S Joint 3 can not folditself auy further and
the.rcfolc the end-effector cannot enter into the w-7 sheet. nut
the opposite direction is feasible and thearmn is capable of mov-
ing the end-eflector into w-8 at this configuration. Analytically
we have:

03 <0, d('t([jx .72]) : 0. (8)

Thesame situation happens at configurations B and C. Notice
that if the joint 3 limits were symumetric with respect to 0y =
O, thesemi-singularities A and B would belong to the same co-
regular surface and the c¢-S bundle would disappear. Notice also
that serni-singular i tics are easily recognizable in the configuration
space. as points where the self-motion manifolds are tangent to the
jointlimit sm face. In fact, this semi-singularity property provides
amethod to search and identify SCU-SINEUarities along the joint
limit surfaces.

The semi-singularitics D and 15 occur at the joint 2 limits but
they are different in nature from the 3 previous oncs. Point 1)
gencrates a co-regular surface but it is itself not geometrically
connected to it. This is duc to the fact that the self-rnotion mani-
fold associated to D is tangent from the outside of the joint range.
Point]) dill pivots a co-regular surface because the self-rnotiol,
manifold generates a branch inside the configuration range, sep-
arating c-4 fromec-Ha.

Point ¥ is also part of a self-rrlotior, manifold which is tangent
to the joint limit from the outside, but it did not gencrate aco-
regnlar surface. This is due to the fact that it corresponds to the
newinnerboundary of the work space and, as such, doesnot have
theseparating effect that interior singularities do.

The last senii-si ngularity, I, occurs at the intersection of two
jointlimits. The self-nlotion manifold coriesponding to Fis tan-
pent a a corner and the configuration is aso displayed in Figure
9. It is semi-singular because both jacobian columns subjected to
the joint linit constraints are pointing into w-6 and therefore it
is not possible to move the end-eflector into w-7. The remaining
3 corners of the configuration space are not semi-singularities be-
cause one Vector pointsinwards while the other points outward
and therefore the configuration is stillfull rank.

Notice that semi-singularity ' (and the entire c¢-6¢ bundle for
that matter) corresponds to a configuration where links 1 and
3 overlap. If we arc to avoid that, wc must add this constraint
to eq. 6, removing ¢-6¢ from the joint range. Asit happens in
general, the removal of a singularity from the configuration space
is followed by the disappearance of the corresponding co-regular
surface. In this case, removing c- 6¢ causes the merging of w-6
with w-7inthe workspace and c-6a with c-7a, ¢-6b with c-7b in
the configuration space.

Table 1: Denavit-1lartenberg parameters for the AAT Arm.

i|oi|di| @ |joint offset | joint range for §;
1]10]d|'90" 0 0, unlimited “'”
210(0]| 90 180° -105°< 9,< 105°
310 [ds| 90° 180° --165° <5< 165°
4100 90 1sO° --105°<04<105°

5|0 |ds|-90° 90° --165° <0< 165°
6100 9 90° -102° <9< 131°
710|060 90° -90° -130°<07<22"

s|0|ds 0 10" 05 unlimited

6 Case Studv:The AAI Arm

1u this section we will apply the concepts presented in this paper
to the 8-degree-of-frecdoln maunipulator,calledthe AA | Arm.

The Denavit- Hartenberg parameters and the joint limit con-
straints for the AA | Arm arc show nin Table 1. Figure 11 shows
the Armn and its work space.

A parameterized inverse kinematics for this manipulator is
readily available, as well as thc symbolic inverse jacobian [7].

The manipulator iS naturally decotnposable into two sub-arins
serialy conunected.

Theupper part is aredundant spherical wrist, responsible for
the orientation of the end-eflector. The lower part is primarily
responsible for positioning, but the orientation of the end-eflector
isnot invariant with respect to the self-rriotion of the lower part.
T other words, the self-inotion of the upper part dots not require
any counteraction from the lower part, but the lower part self-
motion must in general be compensated by the upper part in
o1 dcr to preseive the end-eftector position and orientation.

We will describe the AA | Arm self- mmotion in two sections.
The first section addresses the positioning self-lllotiorl due to the
lower part. The orientation self-nlotion duc to the upper part in
addressed in the second section.

N
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Figure 11: The AAl Arm and its work space.
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Figuie 2 W-shects for the lower part of the AAT Arm.

6.1 YPosit oning Self- Motion

Thelower part of the AAl A contains four joints. The original
designincludes joint linits for the first joint as well, but in this
paper we will consider joint Iwithout limits in order to alow the
visualization of co-regular surfaces in3-1).

Bascd on thissimplification, the 3-1) work space is represented
by its 2-D cylinder generatrix, as inFigure 12. In other words,
the complete work space is obtained by a rotational sweep of
the generatrix about the vertical axis, which coincides with the
joint 1 axis. Thisprocedurc allows us toreprescnt the kinematic
map as from a 3-dimensional configuration Space (92,0s,04) to a
2-ditnen sion al work space (the generatrix).

Figure 13 shows the c-bundles and co-regular surfacesobtained
for al singularitiesan dscri-singulatities of the lower part. Thin
lines are self-motion representativesalong a co-regular surface.
The thicker lines represent some of the SCI=SINgU arjties encoun
teredin this case. Fipure 14 shows the corresponding connectivity
graph.

Thesingularities arc:

1. the lines givenby 82 =.0,05:- 90°and 6, = 0,05 = - 90"

2. The plane given by 04 = 0.

Figure 13: C-Bundles for the lower part of the AA] Arn.

sogment

segment

Figure 14: Connectivity Graph for the lower part of the AA | Arm.

The scllli-singularities are:

1.The lines given by 0,:
-103",03 = 0,04>0.

]050703 = 0104 < 0 and O2 ==

2. Onccurve in each of the joint limit surfaces givenby 03 =:
165° and f3 - - 165° (no analytic description is available).

3. The planes given try 04 = 105° and 0,: - 105°.

We mentioned in the introduction section that boundary sin-
gularitics do not generate co-regular surfaces because they do not

separate between reachable regionsin the work space. In order to
scparate @ mi-dimensional region we need a constraint of dimen-
sion a least m -1 (a point separates a line, a line separates a
plane, aplaue separates a 3-J) region,etc). A jacobian surface is
orthogonal to the singular direction and is usualy of dimension
m - 1, considering that only one degree of freedom is lost. The
addition of self motion to those singularities produce surfaces in
the configuration space of dimeunsion --14r =- n - 1, where
r- is the degree of redundancy,andas such they can separate the
n-dimensional configuration] space. By this simple dimensional
anal ysis, we conclude that r admissible null space spanning vec-
tors arc necded in order to produce the separating effect.

Boundary singularities (singularities occurring a the bound-
ary of the work space) arc unescapable by nature, i.e. no self
motion is capable of restoring full rank[2}. In most cases, the
null space spanning vectors at boundary singularities arc unad -
uissible, i.e. there is no self-nlotion at such configurations and
the inverse map is just a point (or a set of points due to symme-
try). The result is a surface of dimensionm --1 embedded in a
n-dimensional space. This surface can not sgm.rate the configu-
ration space, by the samereason that a point can not separate a
plane.

This phenomenon is easily visualized at the examplesin the
previous sections, where a boundary singularity is premapped to
a point in the configuration space, unlike the premap of interior
singularities, which arc curves.

However, there are cases where a null space vector may be
admissible at a boundary singularity. For instance, if we have a
positional manipulator and a rotary joint with its axis intersecting
the end-eflector at its boundary, the null space vector due to that
joint velocity is admissible. This case study is an example of that.
At the outer boundary (0,== O), the joint 3 axis intersects the end-
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manipulator. (b) Work space sheets for the upper part

Figure 15: The Spherical Redundan { Manipulater and its work
space representation.

effector. The manifold of those singular configuration s is a plane
rather than a line. Since those singularities arcumncscapable, the
co-regular SUrface is the very singularity manifold: CS = S

A boundary surface connects to a Sit gle W-sheet instead of
two. Therefore, aco-vegular surface due to a boundary singularity
manifold can only separatebetweenbundles of thesame w-sheet.
The graph in Figure 14 shows two connections between different
bundles from the premap of w3. Those connections arc produced
by the 8,=0 plane.

The work space boundary semi-singularities given by 0y:
14 105° also containadmissible null space vectors and therefore
produce co-regular surfaces. However, No additional information

is cairied out by thosctwo planes because they represent the work
spa ce boundary at the configuration space boundary.

6.2 Orientation Self-hfc)tioll

Theupperpart of the AA | Arin aso consists of four joints, but

Figure 16: ~-bundles for theupper pat: O < p <90”.

Figurcl'/:c‘ bundles for the upper part: 90° < p < 130°

inthis case our manifold map is complete because joint 8 isunlim-
ited try design. It is therefore suflicient to describe the direction
of the approaching vector, again a 3-1)to 2-Dmap. The frectior |
of the approaching vector is represented by a pointounthe surface
of a sphere (Figure 15).

morder to visualize the work SPaceintwo dimensions, we ap-
ply a topologica deformation of the sphere, utilizing the natural
opening at the bottom produced by the joint limits {Figure 15).
Analytically, theredundant forward map just describedis repre-
seuted by the following set of equations in polar coor dinates:

p= cos™’ (cecr) 9)

¢ = Atan?{cssger - $557,C587 - S$5850q). (lo)

The polar radius p represents the angle between the approach-
ing vector asandthe vertical axis of the upper part,as.The
polar angle ¢ represents the angle between the projection of as
onto the plane perpendicular to aq and the nor mal vector ny.
Notice that Frame 4 is the end-eflector frame for the lower part
as wellas the hasc frame for the upper part. Fquation 10 may be
factorized to fs -1 tan(ssc7/s7) for the appropriate arctangent,
which demonstrates the direct relationship between 05 and the
polar angle ¢.

Figure 15 shows the jacobian surfaces as they separate the
work space into 25 w-sheets. The jacobian surface given by p =
90° is highlighted because it is due to the only interior singular-
ity of this arim and it separates the configuration space into 6
regions, named R1to K6 as in Figure 18. Since this surface di-
vides the work space into two regions, it is convenient to analyze
cach of those regions separately. Yigurel6shows the c-bundles
premapped from the inner circle O < p < 90" into regions Kl,
It2 and 1{3. Figure 17 shows the c-bundles premapped fromthe
outer ring 900 < p < 1300 into regions R4, R5 and 6. Finally,
Figure 18 shows the C©'nectivity graphs for the inner and outer
part as well as the “Mnections fromone to the other through the
co-regular surface given by p = 90°. Yor simplicity, the topology
of the node is not included, In this cam, all manifolds arc seg-
ments. Furthermore, the nodes do not contain the full name of
the bundle because of lack of space. The full name can be inferred
from the cor1esponding w-sheet it premaps to.
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Figure 1S Connectivity Graphs for the upper part.

For example, the top leftmost node is labelled “@ and it is a
premap of wi2, therefore its full name is c12a.

Note the complexity of this case, as compared to the same
example without joint limits. Inthe later case, the connectivity
graph would consist of ouly 4 nodes and 4 links. This is a con-
crete example of how the presence of joint limits can drastically
increase the complexity of manifold maps. Given the fact that
most manipulator designs incorporate such constraints, it is im-
perative that wc understand the effects those constraints produce
and designmethodsto analyzeand explore it. ‘I'his paper is aimed
a thisvery point. Based on the properties of scnli-singularities,
the entire process can be automated and even be utilized as a de-
sign parameter t0 optimize the global performance of redundant
manipulators.

7 Summary and Conclusion

As the manipulator crosses a co-regular surface, the self-motion

manifolds arc ruptured like branches of a hyperbola passing through

the center. This effect justifies the appearance of different k-
homotopy classesand ultimately determines the connectivity of
con figurations across neighboring bundles. A connectivity graph
can begeneratedandtheinformation contained in it can be used

a the top level of a global planner to determine strategies to
optimally satisfy a given set of constraints.

The introduction of joint liits reshapes the entire topology of
self-rl~otion manifolds and creates new types of singularities which
arc unidirectional innature. They were caled semi-singularities
because the range space in the absence of a direction becomes a
semi-space.

As the dimension of the system increases, the topology effects
of joint limits become even more severe, justifying the need for
an adequate framework and basic principles to be used for the
analysis of redundant manipulators. In this paper, the frame-
work of manifold mapshas been refined and basic principles were
introduced, such as semi-singul arities and their corresponding co-
regular surfaces.

A case study presents preliminary results on the application
of the concepts discussed in this paper to a spatia redundant
manipulator.

We arc currently pursuing the im plementation of a global re-
dundancy resolution and planner algorithm which will benefit
from the discoveries presented in this paper.
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